Imperial College
London

Lecture 12

Motor Drive, Polling and
Interrupt

Prof Peter YK Cheung

Dyson School of Design Engineering

URL: www.ee.ic.ac.uk/pcheung/teaching/DE2_EE/
E-mail: p.cheung@imperial.ac.uk

PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 1

In this lecture, we will go through what you have learned in Lab 4. In particular, | will
explain the limitation of polling as a method of detecting a real-time event. Then |
will explain what and why interrupt is so much better.

Finally | will explain how you can use interrupt with the Pybench board using
Micropython.

Driving a DC Motor — H-Bridge

¢ The DC motor needs four transistors to control its

speed and direction.
¢ InLab 4, we used the TB6612 chip to drive the 1 l — ™ 0
motor with four transistors. :@:
¢ The combination of transistors is called an H-Bridge, Ly
due to the obvious shape. (See diagram.) 0 Motor l@: 1
+ Transistors are switched diagonally to allow DC

current to flow in the motor in either direction.

¢ The transistors can be Pulse Width Modulated to
reduce the average voltage at the motor, useful for
controlling current and speed. 0 A l

, &
On 8= ¢

PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 2

The content of this slide was presented to you last year in DE1.3 Electronics 1 module in
Lecture 14 — Drive. | present this here again to refresh your memory.

Since motor coils are essentially inductors, they have low DC impedances (resistance of the
wiring). Hence when driving motors, we need to use special driver chips.

The driver chip you will use in Lab 4 (the TB6612) is often called the H-Bridge Driver. Shown
here is the simplified block diagram. There are four transistors connected to the supply rail
and ground. (It doesn’t matter which is which because the circuit is symmetrical.) The
motor is connected in the middle forming the horizontal link of the H. The transistors are
MOSFETs (metal oxide silicon field effect transistors) which is acting like a voltage controlled
switch. When a ‘1’ or high voltage is applied to the gate control terminal, the transistor
turns ON and conduct electricity. If a ‘0’ or low voltage is applied, the transistor is OFF. So
the top diagram shows a configuration that results in the supply voltage being applied to
the left terminal of the motor. The right terminal of the motor is grounded, and the motor
turns in one direction. Reversing the control to the transistors results in the motor turning
in the other direction.

If you use an AND gate at the control input, you can also add a PWM signal to control the
speed of the motor.

Basically the ‘1’ and ‘0’ control signals are the A0 and A1 signals on the TB6612. The PWM
signal is what you apply to the input of the AND gate.

Now you know how the TB6612 works.

Pybench Board and its components

Semeve. .
= RNRANR S

2B oror orver [o

2 < . 2 .. N
it
e il 12V to 5V BLACK = GND
i ERRas LRS- converter : -] _BLUE=33v

=
) OND VX EZXZZX ZXOZX BIX 81 - I

™
Q00000 QO 3 © 'U,.'A‘sa;r:.ux“o

CIkOC Rst 3v3 Bnd

Organic LED
128 x 64 display

Microphone & 'H s
el Amplifier é‘: EtEL!.

S

CTS W RXI * RTS _D

potentiometer [

PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 3

LY
QD & TX0 A GNO.
(e nakiRa

Driving the motor with TB6612

import pyb
from pyb import Pin, Timer

Define pins to control motor

Al = Pin('X3', Pin.OUT_PP) # Control direction of motor A
A2 = Pin('X4', Pin.OUT_PP)
PWMA = Pin('X1') # Control speed of motor A

Configure timer 2 to produce 1KHz clock for PWM control
tim = Timer(2, freq = 1000)
motorA = tim.channel (1, Timer.PWM, pin = PWMA)

av_ W™ rg | PWMA
def A_forward(value): sy vee AIN2 ”
A1 low() GND AINT
T, a1 TB6612 STBY X3
A2.high() DAOZ —_— Motor [el
motorA. pulse_width_percent(value) PSS Oriver [DT
BO1 —QMM-B— X2
A_forwa rd(50) GND GND. GND
PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 4

Last year, you wired your motors to the TB6612 H-bridge driver chip (the one in
brown colour) yourself. This year, the wirings are all done for you on the Pybench
PCB.

You will also be connecting the Pybench board to a 12V lithium battery via the large
yellow power connectors. The toggle switch turns this ON and OFF.

The motor is connected to the Pybench board via the 6-way ribbon cable. You will
be learning how to drive the motors (again) in Lab 4 on Wednesday.

You will also be using the Bluetooth board (BluFruit UART from Adafruit) to control
the speed of the motor. Here are the pin names on the Pyboard for reference.

_ micro SD slot| [USB micro-AB|
glanme ﬁme available timers peripherals Y skin
Yl H ce e
[C7 e
Y4 {{ B9 e
Y5 H B12 [1ss]

B

2
z

|

B1

2
Z

.

GND

Y12

CAN(2) |f can()

BO

2
>

Y6 [B13

Y11

a
Y7 | B14 ;IIID B11

Y10

H

Y8 H B15 MOS| B10

Y9

X9 B6 MOSs! A7

X8

B7 MISO A6

X7

ca A5

X6

Ad

C5

X5

A3

x|l >
I =S
N|r~|o

X4

a2
ar

A2

)
5]

X3

Bl
SRleEl |

Q000000 Al

X2

oooo.ooo;;o;ooooo

@ooooooo.o‘ooo_voo
]

A0

7
.

X1

Ci

|
2H
IREEE)

GND

FRRRRAAGES ==

in

peripherals available timers ng}]ne game

Exercise 1 of Lab 4 is just a revision from last year’s Electronic 1 module. If you have
forgotten this, please go back to last year’s lecture on “Drive”.

Here are some interesting questions to ask yourself to check whether you have

learned what is expected of you:

1. Why do you need this driver chip at all? Could you drive the motor directly from
the microprocessor?

2. How are the two pins (IN1 and IN2) used to control the direction of the motor?

3. What is PWM and why is it desirable to use PWM to control the speed of the
motor instead of using analogue voltage level (e.g. from a DAC signal)?

4. What is meant by “Creating a pin object A1” in the Python code?

Al = Pin('X3", Pin.QUT_PP)

5. Explain how timer 2 is programmed to produce the PWM signal to drive motor
in the following lines.

Configure timer 2 to produce 1KHz clock for PWM control
tim = Timer(2, freq = 1000)
motorA = tim.channel (1, Timer.PWM, pin = PWMA)

6. How should you choose the frequency of the PWM signal to drive the motor?

Controlling the speed with potentiometer

33v

x11 Pybench X1, X2, X3, X4
Pyboard X7 X
motor control
USB to PC/Mac el Y4,Y5,Y6,Y7
MicroSD
pot = pyb.ADC(Pin(‘X11")) # define potentiometer object as ADC conversion on X11
value = pot.read() # value = 0 to 4095 for voltage Ov to 3.3v
while True: # loop forever until CTRL-C

speed = int((pot.read()-2048)%200/4096)
oled.draw_text (0,40, 'Motor Drive:{:5d}%"'.format(speed))
oled.display()
if (speed >= DEADZONE): # forward
A_forward(speed)
B_forward(speed)
elif (speed <= -DEADZONE):
A_back(abs (speed))
B_back(abs (speed))
else:
A_stop()
B_stop()

PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 5

Measuring Motor speed with Hall Effect Sensors

4 Clockwise " . ’
- Coded Outpt | ° i i iR i
Hall effect sensors - C— Circular magnet
: e | [T L
2 3 (sine)
motorA -Y6 motorA - Y4 — I I I I I I
motorB - Y7 motorB - Y6 (cosine)

0111213101112131011121310
BU’ Offset

+ Circular magnet has 13 pole pairs Anbiclockwise | Voo
+ The gearbox of the motor has a 1:30 CodedOutput = |~ | R R T e R .

gear ratio Channel A I I I I I L
* How many pulses are produced for (sine)

each revolution of the motor? I l I I I l
* Speed of motor (in rps) can be CQ';:,'F

0/11/213101112131011121310

measured by counting the number of
pulses in a given time window (say
100msec)

Define pins for motor speed sensors
A_sense = Pin('Y4', Pin.PULL_NONE) # Pin.PULL_NONE = leave this as input pin
B_sense = Pin('Y6', Pin.PULL_NONE)

PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 6

Next, we use the potentiometer (5kQ2) to control motor speed and direction. Here

are the questions to test yourself:

1. In Micropython, how do you create an object to perform ADC conversion? Why
in this case, we use pin X11?

2. How do you define and work out the resolution of the ADC converter?

3. Explain the meaning of the statement:

speed = int((pot.read()-2048)%200/4096)

4. Explain the meaning of the format statement in Python:

oled.draw_text (0,40, '"Motor Drive:{:5d}%"'.format(speed))

Next, we use the Hall Effect Sensors (two) on the motor to determine the speed of
the motor and direction of the motor. The questions to ask yourself are:

1. Refer to the sensor output signals, what happens when you increase the motor
speed?

2. How would the two sensor signals differ when you change the direction of
rotation in the motor?

3. Given the waveform of the two signals (Channel A and B) from the sensors, the
relative phase is always =7/2. Why?

4. Given the circular magnet has 13 pole pairs, and that the gear of the motor has
a 1:30 reduction ratio, how can you derive the speed of motor (in revolutions
per second) from the number of rising edges E in a period T? (answer: 390
pulses per revolution. Therefore speed of motor is:

motor_speed (in rps) = (humber of pulses/390) / T in seconds

Pseudo code to measure speed by polling Measure motor speed by polling

« Initialize variables to zero: motor_speed, sensor_state, pulse_count ¢ Polling means checking Initialis
*+ Repeat forever: for some eventin a loop, |Astate = o

> variables

. A_speed = @
Mark current time (as tic) then do something A_count = 0
If sensor has gone from low to high (rising edge) ¢ Here we check sensor tic = pyb.millis(); #
increment pulse_count signal of motor A changing [, 7. +roe:
Update sensor_state by reading hall effort sensor value igh i By AR ed
P e > from low to high in the # detect rising edg
If elapse_time >= 100ms polling loop if (A_state == @) a je dete
motor_speed = pulse_count _ A_count += 1
reset pulse_count ¢ When this occurs, A_state = A_sense.value() # r
display speed on OLED as motor_speed/39 increment a counter T Uheck To see 1T 100 meec Mas clapse
A_count toc = pyb.millis() 4

if ((toc-tic) >= 100):
A_speed = A_count

¢ We also check elapsed
time = 100msec in polling
loop (tic-toc)

+ If time out, save count as

Discuss: what is the limitation of polling?

Speed measurement A_count = @ # reset transition count
A_speed, and reset # Display new speed
counter oled.draw_text(0,20, 'Motor A:{:5.2f} rps'.format(A_speed/39))

oled.display()
tic = pyb.millis() <mmmm

PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 7 PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 8
This is typically how one can measure the motor speed by polling — continuously We measure the speed of rotation by counting the number of low-to-high transitions on
checking in a tight loop whether something has happened or not. one of the two Hall Effect Sensor signals.

This can be achieved by polling — checking in the code when such transition has occurred. If
Here there are TWO polling operation happening. The first if-statement checks to yes, up a counter value. Then check if 100msec has elapsed. If yes, remember the count
see if the Hall Effort signal has a rising edge (goes from low to hight). The second if- value and reset the counter.
statement checks for a time window of 100msec. By counting the number of pulses Questions to ask yourself:
:c:letectled in 100ms window, we can calculate the speed of the motor using the 1. What s the purpose of these two lines?
ormula:

if (A_state == @) and (A_sense.value()==1): # rising edge detect
A_count += 1
A_state = A_sense.value() # read value on pin A_sense

motor_speed (in rps) = number of pulses/39

39 because each revolution of the motor generates 390 pulses. Therefore in a
100msec period, one revolution will give us 39 pulses! 2. How are tic and toc, which are built-in functions in Matlab, implemented in
Micropython?

3. Explain the following codes:

Check to see 1T 10¥ msec has elapsed
toc = pyb.millis() (3 ¢ummm
if ((toc-tic) >= 100):

A_speed = A_count

Lab 4: The idea of interrupt

Interrupt occurs
" Nomal while in instruction 4
Instruction
o -
Instruction 1
Instruction 2
s > 1. Save the state of program
Instruction 3 2. Jump to ISR
- 3. Stop further interrupts
Instruction 4 /| 4. When finish return
Instruction 5 ! M
Instruction 6
Instruction 7 " ¢ Hardware method to detect event (e.g. rising edge on a pin),
generate interrupt
¢ Processor forced to do something else — defined in the
Interrupt Service Routine (ISR)
¢ Return when finished
PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 9

Lab 4: Interrupt Service Routines

+ Need to detect and handle two types of events:
1. Rising edge on Hall effect sensor signal on Y4
2. 100ms elapsed time on a Timer

+ Need two ISRs for these two interrupt events

+ Need to provide a dummy variable as shown here

Section to set up Interrupts

def isr_motorA(dummy): # motor sensor ISR - just count transitions
global A_count
A_count += 1

def isr_speed_timer(dummy): # timer interrupt at 100msec intervals
global A_count
global A_speed

A_speed = A_count #r nt value
A_count = @ #r
PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 10

The reason why polling is not a good method to measure speed of motor is that
microprocessor can only execute ONE instruction stream at a time. If you are checking
(polling) for rising edge, you cannot do other things. Conversely if you are doing other
things, you will miss the rising edges. That’s why in the experiment, you found that the
polling method give a speed reading that is “noisy”, meaning that it is jumps all over the
place!

Interrupt is different. You use HARDWARE method to detect the occurrence of an event.
Forces the processor to suspend whatever it is doing at the time, and go to another
segment of CODE to service the interrupt (hence we call this the Interrupt Service Routine
or ISR).

When finished, return to the interrupted code and continue as before.

Question to ask yourself:

1. Why is interrupt better than polling?

2. What happens if your interrupt service routine is long and complex?

3. How should you think about a system with multiple interrupts?

4. What is it meant by “saving the state fo the program”? Why is this necessary?

Here are two interrupt service routines. The first to handle low-to-high transition on the
senor signal from Motor A. The second to handle timer alarm which happens every
100msec.

Question to ask yourself:

1. When will the functions isr_MotorA and isr_speed_timer be executed?
2. What are the purposes of these two functions?

3. Why you need to define A_count and A_speed as global?

Lab 4: setting up the interrupts

Allocate some buffer space to handle errors

Specify Pin Y4 as source of interrupt, rising edge

Define timer 4 as a 100msec period timer (10Hz)

timer.callback (ISR) - tell timer to generate an interrupt at end of period, and
execute ISR

Specify ISR for timer time-out Specify ISR for pin rising edge

J

* ¢ o o

Create external interrupys for motorA Hall Effect Senor
import micropython
micropython.alloc_emergency_exception_buf(100)

from pyb import ExtInt

motorA_int = ExtInt ('Y4', |ExtInt.IRQ_RISING, Pin.PULL_NONE,isr_'motorA)

Create timer interrupts gt 100 msec intervals

speed_timer = pyb.Timer(4,|freq=10)
speed_timer.callback(isr_s'J'eed_timer)

PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 11

Lab 4 - Interrupt MAGIC

while True: # loop forever until CTRL-C
drive motor - controlled by potentiometer
speed = int((pot.read()-2048)%200/4096)
if (speed >= DEADZONE): # forward

A_forward(speed)
B_forward(speed)

elif (speed <= -DEADZONE): :
A_back(abs(speed)) W.heel rotating at_ 1. i
will produce 39 rising
B_back(abs(speed)) d in 0.1
S F edges in 0.1 sec
A_stop()
B_stop()

Display new[speed ¥
oled.draw_text (0,20, '"Motor A:{:5.2f} rps'.format(A_speed/BQ))|
oled.display(
+ Program loop does not deal with motor sensor edge, not 100msec elapse time
+ A_speed will always contain instantaneous speed count

PYKC 3 Feb 2020 DE2.3 - Electronics 2 Lecture 12 Slide 12

How does one set up interrupts in MicroPython using the Pyboard and the Pybench
System? First you need to include the following statement to allocate memory to store the

state of the program:
micropython.alloc_emergency_exception_buf(100)

Then you have to tell that hardware that pin Y4 will generate an interrupt on every rising
edge, and that the interrupt service routine is isr_motorA:

motorA_int = ExtInt ('Y4', ExtInt.IRQ_RISING, Pin.PULL_NONE,isr_motorA)

Then, you need to program Timer 4 to time out every 100msec:
speed_timer = pyb.Timer(4, freq=10)

Finally, you need to tell this Timer that it should generate an interrupt when time out, and
run isr_speed_timer:

speed_timer.callback(isr_speed_timer)

Once interrupt is set up properly, the main program loop only controls the motor.
Measuring the speed of motor is done automatically.

The global variable A_speed will contain the correct number of transitions in a 100msec
window ALL THE TIME, and updated every 100msec automatically.

Pin Assignments for Pybench

PIN
X1
X2
X3
X4
X5
X6
X7
X8
X9

X10

X11

X12

FUNCTION PIN

Motor PWM_A/Servo 1 \&
Motor PWM_B/Servo 2 Y2
Motor control AIN1/Servo 3 Y3
Motor control AIN2/Servo 4 Y4
Analogue OUTPUT Y5
SWO \C

Motor control BIN1 Y7
Motor control BIN2 Y8
IMU-12C SCL Y9
IMU-12C SDA Y10

POT5K Y11

Analogue INPUT Y12

FUNCTION
BLE-UART Tx
BLE-UAR Rx
SW1
Motor sensor A_A
Motor sensor A_B
Motor sensor B_A
Motor sensor B_B
OLED-i2C RST
OLED-I2C SCL
OLED-I2C SDA

Microphone amplifier

Unused

PYKC 3 Feb 2020

DE2.3 - Electronics 2

Lecture 12 Slide 13

For your information and future reference, here are the pin assignment found on the
Pybench board.

